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Science and Technology Facilities Council

• Run facilities at the Rutherford 
Appleton Laboratory, UK

• Scientific Computing provides 
computing infrastructure, 
software, support and expertise

• CIL team also at DTU and 
Finden
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• CCPi: Bring together expertise in computational 
research for tomography and imaging

• Open-source software development, 
maintenance and distribution

• Methods development

• Community building

• Training and user support network
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STFC Tomography and Imaging

tomography@stfc.ac.uk



Plan for this workshop
- Introduce tomography and the Core Imaging Library (CIL)

• Standard reconstruction methods for CT
• The importance of data (pre) processing

- Introduction to imaging inverse problems
• Variational regularisation
• CIL optimisation toolkit

- Combining mathematical approaches for deep learning
• Ideas from the literature
• Example in CIL
• Over to you!
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Confidence level check 
• Python and juypter notebooks 

• Inverse imaging problems 

• Computed tomography 

• Deep learning inverse problem approaches



Core Imaging Library (CIL)
• Open-source python framework for CT and 

other inverse problems
• Methods for cone and parallel beam 

geometries for CT
• Tools for reading, processing, reconstructing 

and visualising CT data
• Optimisation tools for iterative reconstruction 

methods with a focus on challenging data
• Apache v2 license.
• Actively developed on GitHub: 

https://github.com/TomographicImaging/CIL
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Noisy

Multi-channel

Non-standard Geometries

tomography@stfc.ac.uk

https://github.com/TomographicImaging/CIL


Intro to CT and FBP

recon

FBP/FDK

iterative

PDHG+ 
TV



Tomography

tomography@stfc.ac.uk 8



Beer-Lambert Law

?Reconstructed volume:
• map of linear attenuation 

coefficients (µ)
• often expressed in cm-1



Minus log

18/02/2026
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Take many projections

18/02/2026
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An x-ray 
radiograph of 
a shell 
measured at 
the 
University of 
Helsinki [1] 

[1] Kamutta, E., Mäkinen, S., & Meaney, A. (2022). Cone-Beam 
Computed Tomography Dataset of a Seashell (1.1.0) [Data set]. 
Zenodo. https://doi.org/10.5281/zenodo.6983008



Sinogram: How the attenuation changes as 
we rotate the object

18/02/2026

tomography@stfc.ac.uk 12

The shell has a 
much more 
complex sinogram



Filtered Back Projection (FBP)
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Filtered Back Projection (FBP)
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Filtered Back Projection (FBP)
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Courtesy J. 
Jørgensen 
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Filtered Back Projection (FBP) 
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Pros

• Fast as based on FFT and 
backprojection

• Few parameters

• Typically works very well

• Reconstruction behaviour well 
understood

Filtered Back Projection (FBP)

tomography@stfc.ac.uk
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Pros
• Number of projections needed 

proportional to acquisition panel 
size

• Full angular range required 
(limited angle problem)

• Modest amount of noise 
tolerated

• Fixed scan geometries
• Cannot make use of prior 

knowledge such as non-
negativity

• Fast as based on FFT and 
backprojection

• Few parameters

• Typically works very well

• Reconstruction behaviour well 
understood

Filtered Back Projection (FBP)
Cons

tomography@stfc.ac.uk



Data processing methods
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Centre of Rotation correction

Region of interest scans

Flat-field correction

Convert to absorption

Ring removal



Accessing the jupyter system 

1) Get into pairs or threes (we 
have 17 compute set-ups) 

2) We will give you a link and a 
password

3) Follow the link and type in 
your password 

4) (Hopefully) you will see 
something like this: 



Example reconstruction - walkthrough
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• Load and investigate a dataset
• Convert from Transmission to Absorption 
• Compute a FDK reconstruction 

CIL-Demos/demos/1_introduction/01_intro_walnut_conebeam.ipynb



Example reconstruction
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• Load and investigate a dataset
• Determine geometric information and set up data 

structures
• Apply basic pre-processors
• Compute a FBP reconstruction 

CIL-Demos/demos/1_introduction/01_intro_sandstone_parallel_roi.ipynb



Shut Down Notebooks
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Wrap up
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Filtered back-projection is very 
good!
• If your data is good it should 

work well
• Do any necessary pre-

processing

If your data is not good… consider 
other methods

DataPre-processing

FBP Reconstruction



Introduction to inverse 
problems and iterative 
reconstruction methods 



Inverse problems 

In case either:
1. No solution
2. Not unique solution
3. Solution sensitive to 

noise
4. Modelling errors in A 

Ill posed problem

Forward

Inverse

𝐴

Forward model       Image to reconstruct Data
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Inverse problem example - CT
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• Assume object is constant in each pixel
• uj value of pixel j

• aij path length of ray i in pixel j

Extremely large set of 
linear equations! 



Other examples
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Why iterative methods?
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• Direct inversion (e.g., FBP) subject to noise and incomplete data
• Iterative methods allow to incorporate noise models, priors etc.
• Most CT iterative reconstructions use regularization

Data discrepancy term 

Regularisation parameter

Regularisation term



Example – no regularisation
A = ProjectionOperator(ig, ag)
init = ig2D.allocate(0)
sirt = SIRT(initial = x_init, operator = A , data = b)
sirt.run(300, verbose=1)
sirt_recon = sirt.solution
show2D([fbp_recon,sirt_recon],
 title = ['FBP reconstruction','SIRT reconstruction'],        
 cmap = 'inferno', fix_range=(0,0.05))

Construct the iterative 
reconstruction method 
based on optimisation 
algorithms and objective 
functions 

32tomography@stfc.ac.uk



Solve optimisation problem iteratively
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Solve optimisation problem iteratively

34tomography@stfc.ac.uk



Solve optimisation problem iteratively
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Solve optimisation problem iteratively
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Solve optimisation problem iteratively
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Solve optimisation problem iteratively
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Example with regularisation
Projector = ProjectionOperator(ig, ag)
LS = LeastSquares(A=Projector, b=data)
TV = FGP_TV(alpha=0.05, nonnegativity=True, device='gpu’)

fista_TV = FISTA(initial=FDK_reco, f=LS, g=TV, 
 max_iteration=1000, update_objective_interval=10)
fista_TV.run(100)
TV_reco = fista_TV.solution

show2D([FDK_recon, TV_recon])

Construct the iterative 
reconstruction method 
based on optimisation 
algorithms and objective 
functions 

39tomography@stfc.ac.uk



Another example of regularisation
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90 projections 15 projections 15 proj. + TV



Iterative reconstruction walkthrough
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• See a non-CT inverse problem - deblurring
• See the effect of different regularisation functions 

CIL-Demos/blob/main/binder/PyData22_deblurring.ipynb



Iterative reconstruction – over to you! 
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• Load a dataset and reconstruct with FBP
• Set-up a least-squares problem to solve using CIL's algorithms, a projection operator and 

objective function
• Add regularisation to the least-squares problem and compare the results: Tikhonov, Non-

negativity, L1-Norm, Total-Variation
• Solve the optimisation problem with the appropriate algorithm: Gradient Descent, FISTA, 

PDHG
30 minutes to run the notebook, then discussion

• Extension options:  https://github.com/TomographicImaging/CIL-
Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb or 
https://github.com/TomographicImaging/CIL-
Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb 

CIL-
Demos/blob/main/demos/2_Iterative/01_optimisation_gd_fista.ipynb

https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb


CIL Optimisation module
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TotalVariation



Optimisation algorithms in CIL
Gradient Descent (GD) When your objective is convex and differentiable 

Conjugate Gradient Least Squares (CGLS) For minimising a least squares problem e. g. min
𝑢

𝐴𝑢 − 𝑏 2
2

Simultaneous Iterative Reconstruction Technique 
(SIRT)

To solve problems of the form A𝑢 = 𝑏 with optional constraints

Iterative Shrinkage-Thresholding Algorithm (ISTA) To solve problems of the form min
𝑢

𝑓 𝑢 + 𝑔(𝑢)  where 𝑓 is convex and 
differentiable and 𝑔 is convex with a simple proximal operator 

Fast Iterative Shrinkage-Thresholding Algorithm 
(FISTA)

Like ISTA but accelerated 

Primal Dual Hybrid Gradient (PDHG) To solve problems of the form min
𝑢

𝑓 𝐴𝑢 + 𝑔(𝑢)  where 𝑓  is convex and has a 
“simple” proximal method of its conjugate and 𝑔 is convex with a “simple” 
proximal.

Stochastic Primal Dual Hybrid Gradient (SPDHG) Similar to PDHG but where 𝑓 can be written as a separable sum 

Linearized Alternating Direction Method of 
Multipliers (LADMM)

To solve problems of the form min
𝑢

𝑓 𝑢 + 𝑔(𝑣)  𝑓(𝑥) subject to 𝐴𝑢 +  𝐵𝑣 =  𝑏 

where both 𝑓 and 𝑔 are convex and have “simple” proximals. 

Stochastic algorithms… Training coming soon...



Deep learning 
approaches to inverse 
problems 



Types of approaches 

- Supervised 

- Unsupervised 

- Semi-supervised  or



Supervised: image 
data pairs available

Semi-supervised: data or 
ground truth available

No data 

Forward 
model 
unknown in 
training 

Forward 
model known 
in training 

Adversarial 
regularisation 

Deep image priors 

Learned 
regulariserisation

Plug and play 
methods 

Deep equilibrium 
methods

No training 

Learned post 
processing

End-to-end 
methods 

Unrolled 
iterative 
methods



End-to-end methods 

Zhu, B., Liu, J., Cauley, S. et al. Image reconstruction by domain-transform 
manifold learning. Nature 555, 487–492 (2018). 
https://doi.org/10.1038/nature25988

Idea: Train a network to go straight from data to reconstruction 
e.g. AUTOMAP (2018) Pros: 

- Don’t need any understanding 
on the physics 

- Quick to evaluate

Cons: 
- Needs a lot of data to be in any 

way robust or generalizable 
- Networks have to map 

between very different spaces
- No guarantees the results are 

even physically reasonable 
- Annoys lots of mathematicians 

and physicists! 



Learned post-processing 
Idea: Train a network to go  from a rough reconstruction to a good 
reconstruction 

Pros: 
- Should do at least as well 

as the rough reconstruction
- Speed depends on rough 

reconstruction method but 
often quick to evaluate

Cons: 

- You lose the guarantee that 
the reconstruction matches 
the data**

- Depends on the quality of 
the initial reconstruction 

- Requires lots of examples 
of good data 

Ji Zhao, Zhiqiang Chen, Li Zhang, and Xin Jin. “Few-view CT reconstruction method based on deep learning”. 
In: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature 
Semiconductor Detector Workshop (NSS/MIC/RTSD) (2016), pp. 1–4.

Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. “Deep null space learning for inverse 
problems: Convergence analysis and rates”. In: Inverse Problems 35 (2 2019), p. 025008.
 



Deep iterative-unrolled methods 
We wish to minimize 𝐷 𝑢 = 𝐴𝑢 − 𝑏 2

2 we could use gradient descent

𝑢𝑘+1 = 𝑢𝑘 − 𝛼𝑘∇𝐷 𝑢 𝑘 𝑓𝑜𝑟 𝑘 = 0,1,2, … .

In iterative unrolled methods we do two things 
1. Replace some part of the method with a neural network 
2. Fix the final number of iterations 

e.g. “Learning to learn by gradient descent”
𝑢𝑘+1 = 𝑢𝑘 − 𝑓𝜃𝑘

∇𝐷 𝑢𝑘  𝑓𝑜𝑟 𝑘 = 0,1,2, … 𝐾

Lots more examples for different algorithms! 

Pros: 
- Quick to evaluate 
- Can include physical knowledge 

e.g. of the forward model 
- Could do at least as well as the 

iterative model 

Cons: 

- You lose any guarantees 
- Needs a lot of data to train 

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T., Shillingford, B. and 
De Freitas, N., 2016. Learning to learn by gradient descent by gradient descent. Advances in 
neural information processing systems, 29.
Adler, J. and Öktem, O., 2018. Learned primal-dual reconstruction. IEEE transactions on medical 
imaging, 37(6), pp.1322-1332. 



Learned regularisation 
A couple of examples (in a large field):

- Regularisation by denoising 

For a denoiser 𝑊: 𝑋 → 𝑋, consider argmin
𝑢∈𝑋

𝐷 𝐴𝑢, 𝑏 + 𝛼 𝑊 𝑢 − 𝑢 2
2

- Adversarial regularisation 

For a discriminator 𝑊: 𝑋 → 𝑅+where 𝑊 is a neural network trained to give 
large values for “bad” images and small values for “good” images. Consider

argmin
𝑢∈𝑋

𝐷 𝐴𝑢, 𝑏 + 𝑊(𝑢)

Romano, Y., Elad, M. and Milanfar, P., 2017. The little engine that could: Regularization by denoising 
(RED). SIAM journal on imaging sciences, 10(4), pp.1804-1844.
Lunz, S., Öktem, O. and Schönlieb, C.B., 2018. Adversarial regularizers in inverse 
problems. Advances in neural information processing systems, 31.

Pros: 
- Can be “explainable”
- Often can be trained using semi-

supervised data

Cons: 

- Often your networks are not 
convex so optimization becomes 
hard 

- Iterative optimization can be slow



Deep Image Prior Methods 
Before we wished to minimise

𝑢∗ ∈ argmin
𝑢

𝐷 𝐴𝑢, 𝑏 + 𝛼𝑅 𝑢

Consider now 
𝜃∗ ∈ argmin

𝑢
𝐷 𝐴𝐺(𝜃), 𝑏 + 𝛼𝑅 𝑢

Where the solution 𝑢∗ = 𝐺 𝜃∗  and 𝐺 is a network with weights 𝜃. 

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018. Deep image prior. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 9446-9454).

Pros: 
- Requires no training data
- Can benefit from implicit priors in 

Neural network 

Cons: 

- Need to train a NN to reconstruct 
each image 

- Often requires early stopping 



Plug and play methods 
Proximal gradient descent methods optimize objectives such as

argmin
𝑢

𝑓 𝑢 + 𝑔(𝑢)

With steps 
𝑢𝑘+1 = prox

𝛼𝑘,𝑔
(𝑢𝑘 − 𝛼𝑘∇𝑓(𝑢𝑘))

where 

prox
𝛼𝑘,𝑔

(𝑢) = argmin
𝑥

1

2
𝑥 − 𝑢 2

2 + 𝛼𝑘𝑔(𝑥)

in plug and play methods we replace this proximal with a learned denoiser. 

There are many variations with different algorithms and denoisers. 

Venkatakrishnan, S.V., Bouman, C.A. and Wohlberg, B., 2013, December. Plug-and-play priors for model based 
reconstruction. In 2013 IEEE global conference on signal and information processing (pp. 945-948). IEEE.

Pros: 
- Removes the need to explicitly 

define a regulariser 
- In *some* cases can give 

convergence guarantees 
- Can be trained with semi-

supervised data 

Cons: 
- Iterative optimization methods can 
be computationally exspensive 



More areas to explore 
We haven’t mentioned: 
• Lots of extensions and adaptations of these methods 
• Deep equilibrium methods
• Noise2noise, Noise2inverse… 
• Bilevel learning approaches 
• ….

Some places to look further (very incomplete list): 
- Deep inverse https://deepinv.github.io/deepinv/ 
- Learned Iterative Optimisation Networks for CT (LION): https://github.com/CambridgeCIA/LION
- S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra and C. -B. Schönlieb, "Learned Reconstruction 

Methods With Convergence Guarantees: A survey of concepts and applications," in IEEE Signal 
Processing Magazine, vol. 40, no. 1, pp. 164-182, Jan. 2023, doi: 10.1109/MSP.2022.3207451.

- Many more… 

https://deepinv.github.io/deepinv/
https://github.com/CambridgeCIA/LION


Challenges of Deep Learning and Inverse 
Problem Approaches 

- Not enough data 

- Too much data (data sizes) 

- The needs of scientists/users
- How do you define what a good image is? 

Naver, E.B., et al. 2026. Direct detection of 

hydrogen reveals a new macroscopic 
crustal water reservoir on early Mars. arXiv 
preprint arXiv:2601.08390.

Waygate – NXCT Warwick – 4kx4k detector 

vs



A CIL example

• How to create a CIL function to wrap a pytorch function or operator
• Examples of image reconstruction using a pre-trained denoiser in CIL
• Timings of the data copies between pytorch and CIL

Extensions
- Some ideas in the notebook 
- Look at https://github.com/TomographicImaging/CIL-

Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb - can you do better with a trained 
approach? 

- Investigate other deep learning and inverse problem approaches 
- Look at other notebooks and showcases 

CIL-User-Showcase/016_cil_torch_fista_pnp/fista_with_denoiser.ipynb

https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb


Find out more 



Using CIL on your own CIL GitHub



Demos and examples
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CIL-Demos

User showcase

14 contributed notebooks 
showcasing interesting uses of CIL

21+ demo notebooks
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Jørgensen et al.: Core Imaging Library - Part I: a versatile Python 
framework for tomographic imaging Phil. Trans. R. Soc. A. 379 20200192 
(2021) DOI: 10.1098/rsta.2020.0192

Papoutsellis et al.: Core Imaging Library - Part II: multichannel 
reconstruction for dynamic and spectral tomography Phil. Trans. R. Soc. 

A.37920200193 (2021) DOI: 10.1098/rsta.2020.0193

Jørgensen et al.: A directional regularization method for the 
limited-angle Helsinki Tomography Challenge using the Core 
Imaging Library (CIL), Applied Mathematics for Modern 
Challenges, Volume 1, Issue 2: 143-169. (2023) 
10.3934/ammc.2023011

Ametova et al.: Crystalline phase discriminating neutron tomography using advanced 
reconstruction methods, J. Phys. D: Appl. Phys. 54 325502 (2021) DOI 10.1088/1361-
6463/ac02f9

Warr R. et al.: Enhanced hyperspectral tomography for bioimaging by spatiospectral 
reconstruction Sci Rep 11, 20818 (2021)  DOI: 10.1038/s41598-021-00146-4

Brown R. et al: Motion estimation and correction for simultaneous PET/MR using SIRF and CIL 
Phil. Trans. R. Soc. A.379 20200208 (2021) DOI:10.1098/rsta.2020.0208

CIL Publications

26/03/2025

https://doi.org/10.1098/rsta.2020.0192
https://doi.org/10.1098/rsta.2020.0193
https://doi.org/10.3934/ammc.2023011
https://doi.org/10.1088/1361-6463/ac02f9
https://doi.org/10.1088/1361-6463/ac02f9
https://doi.org/10.1088/1361-6463/ac02f9
https://doi.org/10.1038/s41598-021-00146-4
https://doi.org/10.1038/s41598-021-00146-4
https://doi.org/10.1038/s41598-021-00146-4
https://doi.org/10.1038/s41598-021-00146-4
https://doi.org/10.1038/s41598-021-00146-4
https://doi.org/10.1038/s41598-021-00146-4
https://doi.org/10.1038/s41598-021-00146-4
https://dx.doi.org/10.1098/rsta.2020.0208


The CIL and Wider CCPi 
Community 



CIL User Community
And CIL discord 
with 200+ users

General and 
tailored support

Fortnightly User 
Drop-ins

User support 
through GitHub

CIL GitHub

CIL Discord

70tomography@stfc.ac.uk



CIL User Community Events

Annual User Meeting

Data and software 
hackathons

Fortnightly Show 
and Tell Meetings

In person and 
online training

Travel grants

71tomography@stfc.ac.uk

For more details…
https://ccpi.ac.uk 

https://ccpi.ac.uk/


Symposium on AI and Reconstruction for 
Biomedical Imaging 
• Online registration still open 

• March 9-10th 2026 

• https://www.ccpsynerbi.ac.uk/eve
nts/airbi/



Wrap up
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• CIL is an Open Source mostly Python library for all your 
tomographic needs:
• I/O
• pre-processing
• Reconstruction
• Visualisation

• Developer Support, user driven, long term funding
• Join the community Discord
• https://www.ccpi.ac.uk/CIL

https://www.ccpi.ac.uk/CIL
https://www.ccpi.ac.uk/CIL
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