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STFC Tomography and Imaging

 CCPi: Bring together expertise in computational
research for tomography and imaging

« Open-source software development, C C I L
maintenance and distribution V

* Methods development

* Community building ‘\ gVXR

* Training and user support network
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Plan for this workshop

- Introduce tomography and the Core Imaging Library (CIL)
e Standard reconstruction methods for CT
* The importance of data (pre) processing

- Introduction to imaging inverse problems
* Variational regularisation
* CIL optimisation toolkit

- Combining mathematical approaches for deep learning
* |deas from the literature
* Example in CIL
* Overtoyou!
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Confidence level check

* Python and juypter notebooks ‘

* Inverse imaging problems

e

* Deep learning inverse problem approaches

* Computed tomography




Core Imaging Library (CIL)

* Open-source python framework for CT and
other inverse problems

* Methods for cone and parallel beam
geometries for CT

* Tools for reading, processing, reconstructing
and visualising CT data

* Optimisation tools for iterative reconstruction
methods with a focus on challenging data

* Apache v2 license.

* Actively developed on GitHub:
https://github.com/Tomographicimaging/CIL

tomography@stfc.ac.uk
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https://github.com/TomographicImaging/CIL

Intro to CT and FBP

[ optimisation ] plugins

io ] framework ] [ processors J utilities }
[ |
Data readers: ||| Data Data Visualisation Optimisation CCPi-RGL FBP/FDK
lab/synchrotron| || structures corrections tools algorithms toolkj
Data writers: Geometric Data Demonstration | || Regularisationg[| ASTRA !
NeXus/TIFF meta-data conversion data sets fitting functigfis | | toolbox plugin ':___ ___________ -
1
Core Data slicing, Noise/data Linear TIGRE i
u 4 U & 1
functionality masking, etc. simulation operators toolbox plugin i
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Tomography
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Beer-Lambert Law

X-ray source

Measurement volume

Reconstructed volume:

* map of linear attenuation
coefficients (M)
often expressed in cm™’

=i §ACIL % CCPi X-ray detector
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Minus log
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Take many projections

direction: angle, slice: 360

radiograph

2000

An x-ray
radiograph of
a shell
measured at
the
University of
Helsinki [1]

1500

vertical

1000

500

0
0 250 500 750 1000 1250 1500 1750 2000
/ horizontal

[1] Kamutta, E., Makinen, S., & Meaney, A. (2022). Cone-Beam
Computed Tomography Dataset of a Seashell (1.1.0) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.6983008
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Sinogram: How the attenuation changes as
we rotate the object

The shell has a
much more
complex sinogram

rotation angle |
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Filtered Back Projection (FBP

Science and

I =550

Scientific Computing
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*EIL @ CCPi tomography@stfc.ac.uk
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Simple backprojection
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Filtered Back Projection (FBP)

Unfiltered

Courtesy J. Jargensen
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Filtered Back Projection (FBP)

0 degrees 5

0 degrees

U

100 150

&

Ramp filter

Filtered bac

100 120 120

Courtesy J.
Jgrgensen
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Filtered Back Projection (FBP)

Courtesy J.
Jgrgensen

Unfiltere

Filtered

tomography@stfc.ac.uk
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Filtered Back Projection (FBP)

Pros

e Fastas based on FFT and
backprojection

* Few parameters
* Typically works very well

e Reconstruction behaviour well
understood

tomography@stfc.ac.uk




Filtered Back Projection (FBP)

Pros

Cons

e Fastas based on FFT and
backprojection

* Few parameters
* Typically works very well

e Reconstruction behaviour well
understood

* Number of projections needed
proportional to acquisition panel
size

* Full angular range required
(limited angle problem)

e Modest amount of noise
tolerated

* Fixed scan geometries

 Cannot make use of prior
knowledge such as non-
negativity

tomography@stfc.ac.uk
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Data processing methods I

Convert to absorption .- !

Centre of Rotation correction
Region of interest scans

tomography@stfc.ac.uk



Accessing the jupyter system

1) Get into pairs or threes (we e
have 17 compute set-ups) e e
2) We will give you a link and a o
password S e A
»
3) Follow the link and type in
Co
your password =
4) (Hopefully) you will see
something like this:




Example reconstruction - walkthrough

CIL-Demos/demos/1_introduction/01_intro_walnut_conebeam.ipynb

* Load and investigate a dataset
* Convert from Transmission to Absorption
* Compute a FDK reconstruction

Science and
Technology
Facilities Council

Scientific Computing
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Example reconstruction

CIL-Demos/demos/1_introduction/01_intro_sandstone_parallel_roi.ipynb

* Load and investigate a dataset

* Determine geometric information and set up data
structures

* Apply basic pre-processors
* Compute a FBP reconstruction

Science and
Technology
Facilities Council
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Shut Down Notebooks

= ©
~ OPEN TABS Close All
o [m] 01_intro_walnut_conebeam.ipynb
Terminal 1
~ KERNELS Shut Down All

- @ Python 3 (ipykernel)

»

L 01_intro_walnut_conebeam.ipynb

tomography@stfc.ac.uk
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Wrap up

Filtered back-projection is very

Pre-processing Data
good!
* If your data is good it should ‘e ‘
work well

* Do any necessary pre-
processing

If your data is not good... consider ‘ q.
other methods

Reconstruction

tomography@stfc.ac.uk 26




Introduction to inverse
problems and iterative
reconstruction methods




Inverse problems <
Ill posed problem

700

555555

v

In case either:
1. No solution
2. Not unique solution
3. Solution sensitive to

noise
Au e b 4. Modelling errors in A

Forward model Image to reconstruct Data

Science and ®
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Inverse problem example - CT

1 X-ray source 1 0

— = exp f —p(s)ds

IR )

......

I; Extremely large set of
b; = —log I_O — F"(S)d‘g linear equations!
L; i

1
b@ — E a;ju; — Au — b Measurement volume
J

* Assume objectis constantin each pixel

° U; value of pixel

° aij path length of ray i in pixel j

X-ray detector I




Other examples

Jrigingl Noisy image Denoised image

,//4
transmitted
pulse
' y
| | c— /
\ y »
\\ ' target ‘ y Reconstruction
. antenna
g beamwidth
B I Iidden layers
echo pulse il{lif"ll
from target ayer output]

© Encyclopaedia Britannica, Inc.
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Why iterative methods?

* Directinversion (e.g., FBP) subject to noise and incomplete data
* [terative methods allow to incorporate noise models, priors etc.
* Most CT iterative reconstructions use regularization

Regularisation parameter

\

uw* = argmin {D(Au,b) + a - R(u)}

/ N\

Data discrepancy term Regularisation term

tomography@stfc.ac.uk
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Example — no regularisation

A = ProjectionOperator(ig, ag)
Au — b init = ig2D.allocate(9)

sirt = SIRT(initial = x_init, operator = A , data = b)
sirt.run(300, verbose=1)

. . sirt recon = sirt.solution
Construct the iterative show2D([fbp_recon,sirt_recon],

reconstruction method title = ['FBP reconstruction', 'SIRT reconstruction'],
based on optimisation cmap = ‘inferno’, fix_range=(0,0.05))

0.05 0.05

algorithms and objective
functions

uw* = argmin {D(Au, b)}

0.00 0.00

[ ]
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Solve optimisation

problem iteratively
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Solve optimisation problem iteratively
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Solve optimisation problem iteratively
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Solve optimisation pro

lem iteratively
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Solve optimisation prob

lem iteratively
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Example with regularisation

Au=10>

Construct the iterative
reconstruction method
based on optimisation
algorithms and objective
functions

uw* = argmin {D(Au,b) + a- R(u)} ~

Science an d
Technology
Facilities Council

Scientific Computing

Projector = ProjectionOperator(ig, ag)
LS = LeastSquares(A=Projector, b=data)
TV = FGP_TV(alpha=0.05, nonnegativity=True, device='gpu’)

fista TV = FISTA(initial=FDK_reco, f=LS, g=TV,
max_iteration=1000, update_objective interval=10)

fista TV.run(100)

TV_reco = fista TV.solution

show2D([FDK_recon, TV_recon])

FDK

direction: vertical, slice: 55

150
>
=
2 100

50

0.06

0.04

0.02

0.00



Another example of regularisation

90 projections 15 projections 15 proj. + TV

0 0 0
20 20 20
40 40 40
> )
5 5
g% g o 60
2 2
80 80 80
100 100 100
0 0
20 20
40 40
B 60 60
:
$
80 80
100 100
120 120

Science and

‘echnolo, < I

Iacllltles%:youncll I 0 20 40 60 80 100 0 20 40 60 80 100
Scientific Computing CORE IMAGING LIBRARY horizontal_y horizontal_y




lterative reconstruction walkthrough

CIL-Demos/blob/main/binder/PyData22_deblurring.ipynb

* See a non-CT inverse problem - deblurring
* See the effect of different regularisation functions

tomography@stfc.ac.uk
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lterative reconstruction — over to you!

CIL-

Demos/blob/main/demos/2_lterative/01_optimisation_gd_fista.ipynb
Load a dataset and reconstruct with FBP

Set-up a least-squares problem to solve using CIL's algorithms, a projection operator and
objective function

Add regularisation to the least-squares problem and compare the results: Tikhonov, Non-
negativity, L1-Norm, Total-Variation

I§)c|5l|\_/lthhe optimisation problem with the appropriate algorithm: Gradient Descent, FISTA,

30 minutes to run the notebook, then discussion

Extension options: https://github.com/Tomographiclmaging/CIL-
Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb or

https://github.com/Tomographiclmaging/CIL -
Desz§leb/main/demQs/4_Deep_Dives/QS_th_ZQZZ,ipynb

tomography@stfc.ac.uk
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https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/3_Multichannel/02_Dynamic_CT.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb

CIL Obptimisation module

description problem type solved
(GLS conjugate gradient least squares least squares

- TotalVariation

Scientific Computlng



Optimisation algorithms in CIL
When your objective is convex and differentiable

Conjugate Gradient Least Squares (CGLS) For minimising a least squares problem e.g. min||Au — b||3
u

S R EN CLTER AT E TR ST S A AT M T [ [ [F[EW To solve problems of the form Au = b with optional constraints

LEEVVEE L UULCTCR D FIEIRERC-CIUIREEIYV AN To solve problems of the form min f(u) + g(u) where f is convex and
u

differentiable and g is convex with a simple proximal operator

Fast Iterative Shrinkage-Thresholding Algorithm Like ISTA but accelerated
(FISTA)

Primal Dual Hybrid Gradient (PDHG) To solve problems of the form min f(Au) + g(u) where f is convex and has a
u

“simple” proximal method of its conjugate and g is convex with a “simple”
proximal.

S ool TR ST LN ITE R 2 BV T ReT e [T A (S ] s [e) B Similar to PDHG but where f can be written as a separable sum

Linearized Alternating Direction Method of To solve problems of the form min f(u) + g(v) f(x) subjecttoAu + Bv = b
u

Muttipliers (LADMM) where both f and g are co ' ’ ' {

Stochastic algorithms... Training coming soon... prOXTg (u) - arggnln

1 2
ro(v) + 3llo - ul} }



Deep learning
approaches to inverse
problems




Types of approaches




Deep equilibrium

Forward methods
model known
in training *\ Unrolled
iterative
Adversarial methods
regularisatiaon
Forward * *_LLearned post
model Learned processing
unknown in f‘regulariserisation K
training
Plug and play End-to-end
methods methods

Deep image priors

No training . /

No data Semi-supervised: data or Supervised: image
ground truth available data pairs available




End-to-end methods

|Idea: Train a network to go straight from data to reconstruction
e.g. AUTOMAP (2018)

cccccccc

Scientific Computlng
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Reconstruction Chain
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AUTOMAP
Reconstruction
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Image

Pros:
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Don’t need any understanding
on the physics
Quick to evaluate

ﬁf g | Cons:
i afod - Needs a lot of data to bein any
A s way robust or generalizable
C

conv deconv

conv,
C1

FC2 FC3 Image
n?  n2snxn  myxnxn mzxnxn nxn -

Complex
sensor datal

FC1
2n2

Networks have to map
between very different spaces
No guarantees the results are
even physically reasonable
Annoys lots of mathematicians
and physicists!

Zhu, B., Liu, J., Cauley, S. et al. Image reconstruction by domain-transform

manifold learning. Nature 555, 487—-492 (2018).
https://doi.org/10.1038/nature25988



Learned post-processing

Idea: Train a network to go from arough reconstruction to a good
reconstruction

o
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Ji Zhao, Zhigiang Chen, Li Zhang, and Xin Jin. “Few-view CT reconstruction method based on deep learning”.
In: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature
Semiconductor Detector Workshop (NSS/MIC/RTSD) (2016), pp. 1-4.

Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. “Deep null space learning for inverse
problems: Convergence analysis and rates”. In: Inverse Problems 35 (2 2019), p. 025008.

CCPi

TOMOGRAPHIC IMAGING
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Pros:

Should do at least as well
as the rough reconstruction
Speed depends on rough
reconstruction method but
often quick to evaluate

Cons:

You lose the guarantee that
the reconstruction matches
the data**

Depends on the quality of
the initial reconstruction
Requires lots of examples
of good data



Deep iterative-unrolled methods

Pros:
We wish to minimize D(u) = ||[Au — b||5 we could use gradient descent - Quick to evaluate
- Caninclude physical knowledge
Upy1 = U — aVD(u)y fork =0,1,2, .... e.g. of the forward model
- Could do at least as well as the
In iterative unrolled methods we do two things iterative model
1. Replace some part of the method with a neural network
2. Fixthe final number of iterations Cons:
e.g. “Learning to learn by gradient descent” - You lose any guarantees
U1 = Uy — fo,(VD(wp)) fork=0,12,..K - Needs a lot of data to train

Lots more examples for different algorithms!

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.\W., Pfau, D., Schaul, T., Shillingford, B. and
De Freitas, N., 2016. Learningto learn by gradient descent by gradient descent. Advances in
neural information processing systems, 29.

Adler, J. and Oktem, O., 2018. Learned primal-dual reconstruction. /EEE transactions on medical
imaging, 37(6), pp.1322-1332.

Thlgy
Facilities Cou

% CCPi

TOMOGRAPHIC IMAGING

Scientific Computlng



Learned regularisation

Pros:

A couple of examples (in a large field): -

- Regularisation by denoising

Can be “explainable”
Often can be trained using semi-
supervised data

Fora denoiser W: X — X, consider argmin D(Au, b) + a||W (w) — ul|3 Cons:

ueX

- Adversarial regularisation

Fora discriminator W: X — R,where W is a neural network trained to give
large values for “bad” images and small values for “good” images. Consider
argmin D(Au, b) + W (u)

uex

Romano, Y., Elad, M. and Milanfar, P., 2017. The little engine that could: Regularization by denoising
(RED). SIAM journal on imaging sciences, 10(4), pp.1804-1844.
Lunz, S., Oktem, O. and Schonlieb, C.B., 2018. Adversarial regularizers in inverse

prg)ble éf@ lop processing systems, 31.

T h ology
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Often your networks are not

convex so optimization becomes
hard

Iterative optimization can be slow



Deep Image Prior Methods

Pros:
Before we wished to minimise - Requires no training data
u* € argmin D(Au, b) + aR(u) - Can benefit from implicit priorsin
u Neural network

Consider now
0* € argmin D(AG(0),b) + aR(u)

u Cons:
Where the solutionu® = G(0*) and G is a network with weights 6.

Need to train a NN to reconstruct

each image
Often requires early stopping

v ml .

Corrupted 100 iterations 600 iterations 2400 iterations 50K iterations

Figure 3: Blind restoration of a JPEG-compressed image. (electronic zoom-in recommended) Our approach can restore ai
image with a complex degradation (JPEG compression in this case). As the optimization process progresses, the deep imag;
prior allows to recover most of the signal while getting rid of halos and blockiness (after 2400 iterations) before eventuall’

overfitting to the input (at 50K iterations).

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018. Deep image prior. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 9446-9454).
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Plug and play methods

Pros:
Proximal gradient descent methods optimize objectives such as - Removes the need to explicitly
argmin f(u) + g(u) define a regulariser
u _ * * i
With steps In son;e casées cantglve
convergence guarantees
u = prox(u, — apVf(u

fetd %k,g (e VI () - Can be trained with semi-

where supervised data
1
_ Tl — 1112
%rkt’);(u) = argminz [lx —ull + kg () Cons:

in plug and play methods we replace this proximal with a learned denoiser. - Iterative optimization methods can

be computationally exspensive
There are many variations with different algorithms and denoisers.

Venkatakrishnan, S.V., Bouman, C.A. and Wohlberg, B., 2013, December. Plug-and-play priors for model based
reconstruction. In 20713 IEEE global conference on signal and information processing (pp. 945-948). IEEE.

Thlgy
Facilities Cou

% CCPi

TOMOGRAPHIC IMAGING

Scientific Computlng



More areas to explore

We haven’t mentioned:

* Lots of extensions and adaptations of these methods
* Deep equilibrium methods

* Noise2noise, Noise2inverse...

* Bilevellearning approaches

Some places to look further (very incomplete list):

- Deepinverse https://deepinv.github.io/deepinv/
- Learned lterative Optimisation Networks for CT (LION): https://github.com/CambridgeCIA/LION

- S. Mukherjee, A. Hauptmann, O. Oktem, M. Pereyra and C. -B. Schonlieb, "Learned Reconstruction
Methods With Convergence Guarantees: A survey of concepts and applications," in [EEE Signal
Processing Magazine, vol. 40, no. 1, pp. 164-182, Jan. 2023, doi: 10.1109/MSP.2022.3207451.

- Many more...

CIL

CORE IMAGING LIBRARY
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https://deepinv.github.io/deepinv/
https://github.com/CambridgeCIA/LION

- Too much data (data sizes)

- The needs of scientists/users

Challenges of Deep Learning and Inverse
Problem Approaches

NNNNNNN

Not enough data

Naver, E.B., et al. 2026. Direct detection of
hydrogen reveals a new macroscopic
crustal water reservoir on early Mars. arXiv
preprint arXiv:2601.08390.

Waygate - NXCT Warwick — 4kx4k detector

How do you define what a good image is?




A CIL example

ClL-User-Showcase/016_cil_torch_fista_pnp/fista_with_denoiser.ipynb

* How to create a CIL function to wrap a pytorch function or operator
* Examples of image reconstruction using a pre-trained denoiser in CIL
* Timings of the data copies between pytorch and CIL

Extensions

- Some ideas in the notebook

- Look at https://github.com/Tomographiclmaging/CIL-
Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb - can you do better with a trained

approach?

- Investigate other deep learning and inverse problem approaches
- Look at other notebooks and showcases

Science an d
Technology
Facilities Coul

Scientific Computing



https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb
https://github.com/TomographicImaging/CIL-Demos/blob/main/demos/4_Deep_Dives/03_htc_2022.ipynb

Find out more

Science and
Technology
Facilities Council

Scientific Computing
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Using CIL on your own ) CILGitHub

0 README 38 Apache-2.0 license /7 =

CIL - Core Imaging Library

M Anaconda.org 25.0.0 § Last updated 13 Aug 2025 J Platforms
Ll L]
a S00d .. . 09

= @MCIL
The Core Imaging Library (CIL) is an open-source Python framework welcome tO CI Lls documentation !

imaging with particular emphasis on reconstruction of challenging d:
filtered backprojection reconstruction tends to be insufficient for hig
non-standard or multichannel data arising for example in dynamic, sj
tomography. CIL provides an extensive modular optimisation framew

. . ., . . the reconstructed image, while being powerful enough to be employed on real scale problems.
reconstruction methods including sparsity and total variation regular

The aim of this package is to enable rapid prototyping of optimisation-based reconstruction
problems, i.e. defining and solving different optimization problems to enforce different properties on

for loading, preprocessing and visualising tomographic data. Firstly, it provides a framework to handle acquisition and reconstruction data and metadata; it also
provides a basic input/output package to read data from different sources, e.g. Nikon X-Radia,
Documentation NeXus.

The documentation for CIL can be accessed here Secondly, it provides an object-oriented framework for defining mathematical operators and
functions as well a collection of useful example operators and functions. Both smooth and non-

smooth functions can be used.

Installation of CIL

Further, it provides a number of high-level generic implementations of optimisation algorithms to
Conda solve generically formulated optimisation problems constructed from operator and function objects.

Binary installation of CIL can be achieved with conda .

Demos and Examples

We recommend using either miniconda or miniforge , which are b

for conda . We also recommend a conda version of at least 23.10

Science and
Technology
Facilities Council

Scientific Computing

A number of demos can be found in the CIL-Demos repository.

] For detailed information refer to our articles and the repositories with the code to reproduce the
( : I L ( : ( : P l article's results.

CORE IMAGING LIBRARY TOMOGRAPHIC IMAGING




Demos and examples () ciL-Demos

14 contributed notebooks
showcasing interesting uses of CIL

21+ demo notebooks

As we have already defined our acquisition geometry we can use the function read_as_AcquisitionData() to pass this to the reader. The
o import matplotlib.pyplet as plt

reader will use this to configure and return an AcquisitionData object containing the data and the geometry describing it.

N = fista_controlled.iterations[-1]
fig, ax - plt.subplots(2)
path = 'Lego_Lamino3@deg XTH/' ax[@].plot(sparsity_ctrl.sparsity_vals, label='Current sparsity’)
ax[@].hlines(sparsity_ctrl.desired_sparsity, xmin-8, smax-N, colors='r, label-'Desired sparsity’)
ax[@].set_ylabel("sparsity level”)
ax[8].legend()

reader = TIFFStackReader(file_name=o0s.path.join(path_common, path), roi=roi, mode='slice')
acq_data_raw = reader.read_as_AcquisitionData(ag)

ax[1].semilogy(sparsity_ctrl.reg param vals)
ax[1].set_ylabel("Regularization parameter”)
ax[1].set_xlabel("Iteration")
for a in ax.flat:

a.1abel outer()

islicer(acq_data_raw, direction='angle', origin='upper-left')

dut it makes very

1.0
40000 —— Current sparsity
2 _ 08 — i
o Direction angle: Slice 179 g Desired sparsity Be1 size)
3 064
296
> n =2 >
G 0.4 Fleft')
35000  Slice index (direction angle) 2
& 00
200 4 0.2
179
0.0 1
T T T T T T T
Display window percent
30000 PRy i 5 . * sesee
— E F= -2
5 400 — 0-100 g 125x10 014
2 E 12x107?
= —
g Range: horizontal T 115%1072 a2
S 11x107?
600 — (- 1395 % 2 010
25000 T 105x1072
N 008
E -2
Range: vertical = 10
= 2 a5x10-? oo
800 — 0-947 & T T T T T T T
0 50 100 150 200 250 300 004
20000 Pixel aspect ratio = 1 s freration 002
Here we can see how increasing the regularization parameter (lower plot) drives the sparsity level down towards the desired level (top 000
150
> 98 e plot). The iteration can be stopped once the suitable level has been reached (and the relative change is small enough).
g Notice also how the tuning is adaptive. in the sense that as we get closer to the desired sparsity level, the incremental changes in the
H
=L L o4 24, regularization parameter get finer.
a2 92 Adjusting the contrast we can see there still remains a bright circular artifact in the horizontal slice and a stripe pattern in the vertical slice.
50
00 00 show2D(recon, slice list=[('vertical',200), ('horizontal x', 218)], fix_range=(©.06,0.15), origin='upper-left')
direction: vertical, slice: 200
02 -02
100 0
horizontal_x horizontal x

direction: horizonts

[
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slice: 210
<cil.utilities.display.show2D at @x7fbd914cf2de>

CIL
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CIL Publications

Jorgensen et al.: Core Imaging Library - Part I: a versatile Python
framework for tomographic imaging Phil. Trans. R. Soc. A. 379 20200192 PHILOSOPHICAL TRANSACTIONS
(2021) DOI: 10.1098/rsta.2020.0192 SRIHER R Y
Papoutsellis et al.: Core Imaging Library - Part II: multichannel
reconstruction for dynamic and spectral tomography Phil. Trans. R. Soc. Gl il e e
A.37920200193 (2021) DOI: 10.1098/rsta.2020.0193

Jargensen et al.: A directional regularization method for the
limited-angle Helsinki Tomography Challenge using the Core
Imaging Library (CIL), Applied Mathematics for Modern
Challenges, Volume 1, Issue 2: 143-169. (2023)
10.3934/ammc.2023011

Ametova et al.: Crystalline phase discriminating neutron tomography using advanced

reconstruction methods, J. Phys. D: Appl. Phys. 54 325502 (2021) DOI 10.1088/1361-
6463/ac02f9

Warr R. et al.: Enhanced hyperspectral tomography for bioimaging by spatiospectral
reconstruction Sci Rep 11, 20818 (2021) DOI: 10.1038/s41598-021-00146-4
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CIL User Community © cILDiscord

User support And CIL discord General and Fortnightly User
through GitHub with 200+ users tailored support Drop-ins

using-cil Any CIL related dis ives here. As

- My point was just to see if data looked right

&1 @

Margaret Duff (STFC)
Ah - just plot something like show2D(centered2D-ring2D,
cmap="seismic') to see if there has been an affect of the RingRemover

X i ; ; &1 ©®

To see if the centre of rotation corrector is doing anything you can run

with debugging turned on e.g.

© & Cosmeiv

/er quite sure on... With

an fas partofa
hrobarts co

le to end up with g =
Hi @Cosme-liu , than!

L_log_level = logging.getlLogger("'

cil_log_level.setLevel(logging.DEBUG)

processor —

etween putting the
TRotationCorrector.image_sharpness(slice_ind

€ centre', backend='tigre')
processor.set_input(data2D)

ase e.g. in

centered2D =processor.get output() &b n_thetwo o
ghts. For different
r than tuning th it method (e.g.
) Its but this varies depending on the data.
he TV g) the TV term is either
optimisation-probl... &" & an FGP_TV Function ¢ 0 - cil.plugins.ccpi_regularisation or use the
t-“ Sesme e o Auther) ™ Totalvanigtion Funct from ciL for which the proximal method impleme 70
¢ "2 TOMOGRAPHIC IMAGING



CIL User Community Events

' | CORE IMAGING LIBRARY

User Meeting ‘23

Travel grants

For more details...

In person and https://ccpi.ac.uk

online training

Annual User Meeting

Data and software
hackathons

Fortnightly Show
and Tell Meetings

CCPi tomographyd

TOMOGRAPHIC IMAGING



https://ccpi.ac.uk/

Symposium on Al and Reconstruction for
Biomedical Imaging

* Online registration still open

 March 9-10t" 2026

* https://www.ccpsynerbi.ac.uk/eve
nts/airbi/

Symposium on Al and
Reconstruction for

Biomedical Imaging
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Wrap up

* ClLis an Open Source mostly Python library for all your
tomographic needs:
* |/O
* pre-processing
* Reconstruction
* Visualisation

* Developer Support, user driven, long term funding
* Join the community Discord
* https://www.ccpi.ac.uk/CIL

tomography@stfc.ac.uk
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